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The shortest path problem is a kind of optimization problem and its aim is to find the shortest path 

connecting two specific nodes in a network, where each edge has its distance. When considering not 

only the distances between the nodes but also some other information, the problem is formulated as a 

multi-objective shortest path problem that involves multiple conflicting objective functions. The 

multi-objective shortest path problem is a kind of optimization problem of multi-objective network. 

In the general cases, multi-objectives are rarely optimized by a solution. So, to solve the multi-

objective shortest path problem leads to obtaining Pareto solutions. An algorithm for this problem 

has been proposed by using the extended Dijkstra's algorithm. However, this algorithm for obtaining 

Pareto solutions has many useless searches for paths. In this study, we consider two-objective 

shortest path problem and propose efficient algorithms for obtaining the Pareto solutions. Our 

proposed algorithm can reduce more search space than existing algorithms, by solving a single-

objective shortest path problem. The results of the numerical experiments suggest that our proposed 

algorithms reduce the computing time and the memory size for obtaining the Pareto solutions. 

Keywords: Two-objective network; Shortest path problem; Pareto solutions; Extended Dijkstra's 

algorithm. 

1.   Introduction 

The shortest path problem is a kind of optimization problem and its aim is to find the 

shortest path connecting two specific nodes in a network, where each edge has its 

distance. The shortest path problem with single objective function is called “single-

objective shortest path problem” in this paper. Dijkstra's
1
 and the Bellman-Ford 

algorithms
2,3
 are conventional algorithms for solving the single-objective shortest path 

problem. These algorithms are used to find the shortest path between two specific nodes 
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in the network. However, these algorithms can solve only the single-objective shortest 

path problem. When considering not only the distances between the nodes but also some 

other information, for example, toll, fuel cost, or gradient, the problem is formulated as a 

multi-objective shortest path problem that involves multiple conflicting objective 

functions. 

The multi-objective shortest path problem is a kind of optimization problem of multi-

objective network. The multi-objective network model can be applied to various 

problems with many conditions, for example, route information system on the map, 

optimal routing of a network connection to the Internet services, optimally scheduling of 

a production and distribution systems and multistage-structured modeling for supply 

chain management systems, etc. Multi-objective network consists of edges (or nodes) 

with two or more factors. In the general cases, multi-objectives are rarely optimized by a 

solution. So, to solve the multi-objective shortest path problem leads to obtaining Pareto 

solutions. 

Few algorithms for solving the multi-objective shortest path problem have been 

proposed. Hara et al.
4
 proposed a route planning method in car navigation systems by 

using a multi-objective genetic algorithm (MOGA) for multi-objective shortest path 

problem in which subjective comfort for driving is maximized. And, Kambayashi et al.
5
 

proposed a MOGA for selecting the shorter route with less number of intersections. The 

route in their studies is equivalent to the path in our study. Aneja et al.
6
 defined 

constrained shortest path problem. They formulated the constrained shortest path problem 

as a special case of minimal cost flow problem with constraints. Aneja et al.
6
 proposed 

the extended Dijkstra's algorithm for a constrained shortest path problem and Miyamoto
7
 

developed it. Akiba et al.
8
 applied their extended Dijkstra's algorithm to obtaining the 

Pareto solutions of two-objective shortest path problem. 

In this study, we consider two-objective shortest path problem and propose efficient 

algorithms for obtaining the Pareto solutions. Though the basic idea is based on Akiba et 

al.
8
, our proposed algorithm can reduce more search space than Akiba et al.

8
, by solving 

a single-objective shortest path problem. The results of the numerical experiments 

suggest that our proposed algorithms reduce the computing time and the memory size for 

obtaining the Pareto solutions. 

2.   Definition of Problem 

2.1.   Network system 

We define V  as a set of nodes and E  as a set of edges },,{ 1 n
eeE ⋅⋅⋅⋅= , where n is the 

number of edges and j
e  is the j-th edge. Let ),( EVG =  be a given network. Node 

s!(∈V )  means the start node and t !(∈V )  means the terminal node in a network. 

Furthermore, let start(e) and end(e) be the start and end node for an edge e, for the 

convenience. Edge )( Ee ∈  has cost vector ),( 21 ee
cc , where element 

ie
c  is the cost related 

to the i-th objective function of edge e for i=1,2, and all ie
c  are supposed to be 
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nonnegative values. And, we suppose costs 
e
c
1
and 

e
c
2
 occur if a target goes along a path 

from start node to terminal node and the path includes edge e. That is, if a target goes 

along a path with edges 
1
e , 

2
e  and e

3
, costs c

1e
1

+ c
1e
2

+ c
1e
3  
and c

2e
1

+ c
2e
2

+ c
2e
3

 occur. 

2.2.   Shortest path problem of a two-objective network 

For j=1,2,…,n, let }1,0{∈
j
x  be a binary variable, where 1=

j
x  if the target goes along 

edge j
e , and 0=

j
x  if not. And by using these variables, we define n-dimensional vector 

),,,( 21 n
xxx ⋯=x . 

First, we consider the following equations.  

 x j
{e j∈E|start (e j )=v}

∑ − x j
{e j∈E|end (e j )=v}

∑ =

1,!!!!v = s,

−1,!!v = t,

0,!!!otherwise,









 (1) 

for Vv∈ , Ee j ∈ . Note that n-dimensional vector x , satisfying equation (1), can 

express any paths from start node s to terminal node t. 

Next, we define following function for i=1,2. 

 g
i
(x) = c

ij
x
j

e j∈E

∑ .  (2) 

And, let X ≡ {x |!x!satisfies!equation!(1)} , that is, X  denotes a set of paths from start 

node s to terminal node t. g
i
(x)  means total cost, when the target goes along a path x . 

Next, we define the Pareto solutions considered in this study. 

Definition of the Pareto solutions 

For X∈′xx, , path x  becomes a Pareto solution, when there are no other paths x′ , which 

satisfies one of following 3 conditions, among all of X. 

a) )()( 11 xx ′> gg   and  )()( 22 xx ′> gg , 

b) )()( 11 xx ′= gg   and  )()( 22 xx ′> gg , 

c) )()( 11 xx ′> gg   and  )()( 22 xx ′= gg . 

 

Therefore, two-objective shortest path problem in this study can be expressed as follows.  

Definition of problem 

 ,xcg
Ee

jj

j

min)( 11 →=∑
∈

x  (3) 

  ,xcg
Ee

jj

j

min)( 22 →= ∑
∈

x  (4) 

s.t. 
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 x j
{e j∈E|start (e j )=v}

∑ − x j
{e j∈E|end (e j )=v}

∑ =

1,!!!!v = s,

−1,!!v = t,

0,!!!otherwise,









 

and 

}1,0{∈
j
x ,  j=1,2,…,n. 

3.   Existing algorithm 

3.1.    Extended Dijkstra's algorithm 

Miyamoto
7
 developed the extended Dijkstra's algorithm for solving the constrained 

shortest path problem based on the Dijkstra's algorithm. Akiba et al.
8
 presented algorithm 

for obtaining the Pareto solutions of a two-objective network. Their algorithm is based on 

Miyamoto's
7
 extended Dijkstra's algorithm for a constrained shortest path problem. In 

this study, we improved Akiba et al.'s
8
 algorithm to obtain the Pareto solutions of a two-

objective network. Before this, we explain the Akiba et al.'s
8
 algorithm in this section. 

Now, we define the following notations. For Vv∈ , 

v
x  : n-dimensional vector, that means a path from start node )( Vs ∈  to a node )( Vv ∈ . 

vW
 : set of adjacent nodes to node v. 

And, for Vv∈  and i=1,2, i vl  : total cost related to i-th objective function when a target go along the path from node 
s to node v, that is, )( viiv gl x≡ . 

 

Next, we define “label” (v, l
1v
, l
2v
)  as the combination of node v and total costs 

v
l
1
 and 

v
l
2
. And, let 

v
L  be a set of label for node v. Fig. 1 shows the example of network with 2 

kinds of costs for all edges and the numerical example to explain labels for all nodes. 

There are two paths from start node s to node 1. One is the path going along 
1
e , and from 

this path, the label for node 1 is generated as (1, 10, 20). The other is the path going along 

2
e  and 

5
e , and from this path, the label is calculated as (1, 20+ 5,10+ 5) = (1, 25,15) . 

Therefore, L1 = {(1,10, 20), (1, 25,15)} . Similarly, L2 = {(2, 20,10), (2, 25,30)} . However 

label )30,25,2( is dominated by label )10,20,2( . Therefore, set 
2
L  
becomes {(2, 20,10)} . 

In the similar way, L
t
= {(t,15, 25), (t, 25, 20)} . This procedure is based on the extended 

Dijkstra's algorithm. The extended Dijkstra's algorithm is executed by the following 

procedure. 
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Fig. 1.  Costs for all edges and calculation of labels. 

 

Steps in extended Dijkstra's algorithm
8
 

STEP 1: (Initialize) Set )}0,0,{(sL
v
← , W

v
←φ  and sv← . 

STEP 2: Obtain the set 
v

W
 
of adjacent nodes to node v. 

STEP 3: (Obtain the path to adjacent nodes) 

STEP 3-1: Select node ω (∈W
v
) . 

STEP 3-2: Select |),,{(),,( 2121 τττ llll
v

vv
∈ )}()),,(( 21 vLll

v
=∩∈ ττ ττ

 

STEP 3-3: Calculate ),,( 2211 evev
clcl ++ω  for edge e when start(e) is v and end(e) is 

ω , and set ),,(),,( 2211

*

2

*

1 evev
clclll ++

←
ωω ωω . 

STEP 3-4: Compare ),,( *

2

*

1 ωωω ll  with all elements of 
v
L . If label ),,( *

2

*

1 ωωω ll  is Pareto 

solution, ),,( *

2

*

1 ωωω ll is memorized to a set of 
v
L . 

STEP 3-5: Go to STEP 3-6 if all ),,( 21 vv
llv  are selected in STEP 3-2. Go to STEP 3-2 

otherwise. 

STEP 3-6: Go to STEP 4 if all nodes in 
v

W  (that is, adjacent nodes to v) are selected in 

STEP 3-1. Go to STEP 3-1 otherwise.  

STEP 4: (Obtain the path from known path to adjacent nodes and calculate the labels) 

STEP 4-1: Select node ω (∈W
v
) . 

STEP 4-2: Select label 
v
Lll ∈),,( 21 σσσ  for node σ  which is one of all nodes 

connecting with node ω . 

STEP 4-3: Calculate ),,( 2211 ee
cl

c
l ++ σσω  for edge e when start(e) is σ  and end(e) is 

ω , and set ),,(),,( 2211

*

2

*

1 ee
cl

c
lll ++← σσωω ωω . 

STEP 4-4: Compare ),,( *

2

*

1 ωωω ll  with all elements of 
v
L . If label ),,( *

2

*

1 ωωω ll  is Pareto 

solution, ),,( *

2

*

1 ωωω ll  is memorized to a set of 
v
L . 

STEP 4-5: Go to STEP 4-6 if all ),,( 21 σσσ ll  are selected in STEP 4-2. Go to STEP 4-2 

otherwise. 

STEP 4-6: Go to STEP 5 if all nodes in 
v

W  are selected in STEP 4-1. Go to STEP4-1 

otherwise. 

1
e

2
e

3
e

s t 

 

2 

1 

(10,20) 

(20,10) 

(5,5) 

(5,10) 

(15,10) (5,5) 
(s,0,0) 

(1,25,15)

e

(1,10,20) 

(2,20,10) 

(2,25,30) 

(t,15,25) 

(t,30,20) 

(t,25,20) 

4
e

5
e

6
e
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STEP 5: (Select next node or output Pareto solutions) 

STEP 5-1: Go to STEP 5-2 if tv =  and all nodes )( Vv ∈  are selected in STEP 2. Go to 

STEP 2 after selecting )(
v
Wv ∈′  and setting vv

′
←  otherwise. 

STEP 5-2: Output all Pareto solutions |),,{( 21 τττ ll ) }()),,(( 21 tLll
v

=∩∈ ττ ττ
 and the 

algorithm finishes. 

 

Next, we show the searching algorithm for Pareto solutions, which is used at STEP 3-

4 and STEP 4-4 in the above algorithm. 

Searching procedure for Pareto solutions
8
 

STEP 1 : Receive 
v
L , ),,( *

2

*

1 ωωω ll . 

STEP 2 : Select |),,{(),,( 2121 ττωω τω llll ∈′′ ) }()),,(( 21 ωττ ττ =∩∈
v
Lll  

STEP 3 : Go to STEP 4 if both of inequalities ωω 1

*

1
ll ′≥  and ωω 2

*

2
ll ′≥
 
are satisfied. 

)},,{( 21

∗∗
∪← ωωω llLL

vv
 and go to STEP 4 otherwise. 

STEP 4 : )},,{(\ 21 ωωω llLL
vv

′′←  if one of following conditions is satisfied. 

a) ωω
1

*

1
ll ′<  and ωω

2

*

2
ll ′< ,  

b) ωω
1

*

1
ll ′=  and ωω

2

*

2
ll ′< ,  

c) ωω
1

*

1
ll ′<  and ωω

2

*

2
ll ′= . 

STEP 5 : Return 
v
L  if all ),,( 21 ωωω

ll ′′  are selected in STEP 2. Go to STEP 2 otherwise. 

3.2.   Akiba et al.'s reducing idea for the search space
8
 

The extended Dijkstra's algorithm can obtain the Pareto solutions of a two-objective 

shortest path problem. However, this algorithm requires much computing time and large 

memory size for labels when there are many nodes in a network
8
. From this, Akiba et al.

8
 

proposed ideas for reducing the computing time in comparison with the extended 

Dijkstra's algorithm. The extended Dijkstra's algorithm for obtaining Pareto solutions has 

many useless searches for paths. The essential point in Akiba et al.'s algorithm
8
 is to 

remove such non-useful searches. Now, we define the following notations. 

1
mg : minimum value of )(1 xg  in all of X , that is, )}({min 11 x

x

gmg
X∈

= . 

2
mg : minimum value of )(2 xg  in all of X , that is, )}({min

22
x

x

gmg
X∈

= . 

 

Note the number of path satisfying mg
1
 or mg

2
 is not necessarily only one. From this, 

we define the following notations,
 

)}}({min)(|{ 111 xxx
x

ggX
X∈

=′′≡ , 

)}}({min)(|{
222
xxx

x

ggX
X∈

=′′≡ , )}({min 11
2

x
x

′≡
∈′

gd
X

 and )}({min
22

1

x
x

′≡
∈′
gd

X

. 

Let path 
p
x  be Pareto Solution in paths from start node s to terminal node t. Akiba et 

al.
8 
proposed the following theorem. 
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Theorem(Akiba et al.
8
). A path of Pareto solution )( Xp ∈x  satisfies both of 

inequalities 11 )( dg p ≤x  and 22 )( dg p ≤x . 

Fig. 2 shows the image of reduced search space (that is, the space including all the Pareto 

solutions) that satisfies inequalities in Theorem
8
. In Fig. 2, horizontal axis and vertical 

axis mean )(1 xg  and )(2 xg respectively. All Pareto solutions exist in the rectangle with 

corners )0,0( , )0,( 1d , ),0( 2d  and ),( 21 dd . Akiba et al.
8
 discussed the following 

property for total costs on the path from node s to node v. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.  Image of the reduced search space. 

Property(Akiba et al.
8
). If node )( Vv ∈  is on the path of Pareto solution 

p
x , vector 

),( 21 vv
ll  satisfies both of inequalities 

11
dl

v
≤  and 

22
dl

v
≤ . 

Based on above the property, Akiba et al.
8
 proposed the additional process in the 

extended Dijkstra's algorithm. The process which reduces the search space for the Pareto 

solutions is shown in the following.  

Additional process of Akiba et al.'s algorithm
8 

(Add the step in extended Dijkstra's algorithm) 

STEP 0:  

(Obtain the shortest path for the first objective function) 

STEP 0-1 : Obtain 
1

mg  by using the Dijkstra's algorithm. 

STEP 0-2 : Obtain cost vector ),( 21 dmg  by the value of 
1

mg  from STEP 0-1. 

 (Obtain the shortest path for the second objective function) 

STEP 0-3 : Obtain 
2

mg  by using the Dijkstra's algorithm. 

STEP 0-4 : Obtain cost vector ),( 21 mgd  by the value of 
2

mg  from STEP 0-3. 

(Replace the STEP 3 at searching procedure for Pareto solutions) 

STEP 3: (Search for the Pareto solutions within the reduced search space) 

Go to STEP 4 if one of the following conditions is satisfied. 

a) ωω 1

*

1
ll ′≥  and ωω 2

*

2
ll ′≥ ,  

mg1 

g2(x) 

g1(x) 

(mg1, d2) 

(d1,mg2) 

(d1,0) 

mg2 
Search Space 

X1 

X2 

(0, d2) 

0 

(d1, d2) 
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b) 
1

*

1
dl >ω ,  

c) 
2

*

2
dl >ω . 

Go to STEP 4 after )},,{( 21

∗∗
∪← ωωω llLL

vv  otherwise. 

4.   Proposed Algorithm 

Akiba et al.
8
 show their proposed algorithms reduce the computing time and the memory 

size for obtaining the Pareto solutions. However, more efficient algorithm is required as 

even Akiba et al.'s algorithm
8
 needs much computing time and large memory size for a 

network with more nodes. So, we propose new idea of making the search space for the 

Pareto solutions reduce more, in this study. First, we state following theorem.  

Now, we consider a function )()( 21 xx wgg + , where w  is a given positive real value. 

Theorem. Let 
s
x be a path of minimizing )()( 21 xx wgg +  for X∈x . That is, 

x
s
≡ arg min

x∈X
(g1(x)+wg2 (x)) . Then, path s

x  is Pareto solution. 

Proof is shown in Appendix A. Fig. 3 shows the image of solution (path) xs in 

theorem.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Image of path xs and the reduced search space in Theorem and Property. 

The essential point in our proposed idea is obtaining method for the path of Pareto 

solution xs. As shown in Fig. 3, first, we consider the straight line 0)()( 21 =+ xx wgg  and 

this line moves to upper right direction. When a straight line parallel to 0
)()( 21 =+ xx wgg  first crosses some path, this path is xs. 

Now, we define notations )(11 s
gs x≡  and )(22 s

gs x≡  for X
s
∈x , that is, we obtain 

vector ),( 21 ss  of the path xs. All Pareto solutions exist in the polygon with corners )0,0( , 

)0,( 1d , ),( 21 sd , ),( 21 ss , ),( 21 ds  and ),0( 2d . Next, we discuss the following property 

for Pareto solutions. 

 

Pareto solution 

Dominated solution 

g1(x) 

!

(mg1, d2) 
(0,d2) 

xs=(s1, s2) 

(d1,mg2) 

(0, s2) 

(s1,0) 

g2(x) 

!

g1(x)+wg2(x)=0 

!

(d1, 0) 0 
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Property. A path of Pareto solution )( Xp ∈x  satisfies one of 11 )( sg
p
≤x  and 

22 )( sg
p
≤x . 

Property is obvious from the definition of the Pareto solutions. Fig. 3 shows the image 

of reduced search space that satisfies inequalities in property. 

 

From the above, our proposed algorithm is given by replacing STEP 0 at Akiba et 

al.'s algorithm
8 
and STEP 3 at searching procedure for Pareto solutions with the 

following new STEP 0 and STEP 3 respectively. 

(Replace the STEP 0) 

STEP 0 :  

(Obtain the shortest path for the first objective function) 

STEP 0-1 : Obtain 
1

mg  by using the Dijkstra's algorithm. 

STEP 0-2 : Obtain vector (mg
1
,d

2
)  by the value of 

1
mg  from STEP 0-1. 

(Obtain the shortest path for the second objective function) 

STEP 0-3 : Obtain 
2

mg  by using the Dijkstra's algorithm. 

STEP 0-4 : Obtain vector ),( 21 mgd  by the value of 
2

mg  from STEP 0-3. 

(Obtain the shortest path for the xs)  

STEP 0-5 : Obtain xs which minimizes )()( 21 xx wgg +  by using the Dijkstra's 

algorithm. 

STEP 0-6 : Obtain vector ), ( 21 ss  by the path x
s
= {x | x (∈ X) minimize!g

1
(x)

)}(2 xwg+  from STEP 0-5. 

(Replace the STEP 3 at searching procedure for Pareto solutions) 

STEP 3: (Search for the Pareto solutions within the reduced the search space) 

Go to STEP 4 if one of following conditions is satisfied. 

a) ωω 1

*

1
ll ′≥  and ωω 2

*

2
ll ′≥ ,  

b) 
1

*

1
dl >ω ,  

c) 
2

*

2
dl >ω ,  

d) 
11
sl >

∗

ω  and 
22
sl >

∗

ω . 

Go to STEP 4 after )},,{( 21

∗∗
∪← ωωω llLL

vv  otherwise. 

5.   Computational Experience 

From Fig. 3, our proposed algorithm makes the search space for the Pareto solutions 

reduce more clearly than Akiba et al.
 8
. However, our proposed algorithm needs 

additional calculation of minimizing )()( 21 xx wgg +  by using the Dijkstra's algorithm. 

That is, our proposed algorithm may not be efficient if it takes much computing time to 

minimize )()( 21 xx wgg + . Therefore, we performed numerical experiments in order to 

compare our proposed algorithm with the extended Dijkstra's algorithm and Akiba et al.'s 
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idea
8
 in terms of actual computing time and the number of labels. The number of labels 

represents the required memory size for obtaining the Pareto solutions. 

Experiments were executed using a PC with Intel Core i5 (3.2 GHz) CPU with 

4.0GBytes of RAM, Microsoft Windows 7 professional, Visual Studio 2010 and C 

programming language. We obtained the Pareto solutions in the cases that the numbers of 

nodes are 500, 1000, 2000 and 4000. For j=1,2,…,n, we prepared two patterns of costs as 

follows. 

Pattern 1: costs ),( 21 jj
cc  are given values uniformly between 1 and 100. 

Pattern 2: 
j

c
1
 are given values uniformly between 1 and 100, and 

j
c
2
 are given values 

uniformly between 1 and 1000. 

Each numerical experiment was executed three times and we show average values of 

computing times and the numbers of labels in Tables 1 and 2. 

Table 1 shows the comparison for computing time and number of labels when the 

number of nodes is 4000 and costs are prepared by Pattern 1. And, Table 2 shows the 

comparison for computing time and number of labels when the number of nodes is 4000 

and costs are prepared by Pattern 2. In Table 2, we show the comparison of the cases of 

weight w = 1 and w = d1/d2. The proportion is the ratio of proposed algorithm to the 

extended Dijkstra's algorithm in terms of the computing time or the number of labels. 

And, we calculated variance of computing time for each pattern and compared our 

proposed algorithm with the existing algorithms, because all costs (these values are 

gotten by generating uniform random variables) were not the same in each numerical 

experiment. 

The results of the numerical experiments suggest that our proposed algorithm is 

efficient for obtaining the Pareto solutions. Clearly, computing time becomes shorter and 

Table 1.  Comparison for computing time and number of labels 

 
Computing 

time(sec.) 
Variance Proportion 

Number of 

labels 
Proportion 

Extended Dijkstra’s 

algorithm
8
 

100.82 24.6 - 45.47 - 

Akiba et al’s idea
8
 46.58 8.10 46.20% 38.57 84.83% 

Proposed algorithm 11.12 0.20 11.03% 21.07 46.34% 

 

Table 2.  Comparison for computing time and number of labels 

 
Computing 

time(sec.) 
Variance Proportion 

Number of 

labels 
Proportion 

Extended Dijkstra’s 

algorithm
8
 

211.15 4.30 - 65.01 - 

Akiba et al’s idea
8
 102.83 1.80 48.70% 56.50 86.91% 

Proposed algorithm 

(w=1) 
28.00 0.00 13.26% 39.45 60.68% 

Proposed algorithm 

(w=d1/d2) 
26.59 0.10 12.59% 38.04 58.51% 
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the number of labels smaller as the search space becomes smaller. In this numerical 

experiment, we found that computing time increases exponentially in all algorithms.  

However, the results of the numerical experiments suggest that proposed algorithm is 

more advantageous than the existing algorithms in obtaining the Pareto solutions. 

6.   Conclusion 

In this study, we proposed efficient algorithms for obtaining the Pareto solutions of a 

two-objective network. The numerical experiments were carried out to compare our 

proposed algorithms with extended Dijkstra's algorithm and Akiba et al.'s idea,
8
 in terms 

of computing time and the number of labels. The results of the numerical experiments 

suggest that our proposed algorithms reduce the more computing time and the more 

memory size for obtaining the Pareto solutions than the existing algorithms. 
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Appendix A.   Proof of Theorem 

If path xs is not Pareto solution, there exists path x′  that satisfies one of the following 

three conditions.  

a) )()( 11 xx ′> gg   and  )()(
22
xx ′> gg , 

b) )()( 11 xx ′= gg   and  )()(
22
xx ′> gg , 

c) )()( 11 xx ′> gg   and  )()(
22
xx ′= gg , 

1) Suppose x′  satisfies condition a). As )()( 11 xx ′> gg  and )()(
22
xx ′> wgwg  for w , 

)()()()( 2121 xxxx ′+′>+ wggwgg . This contradicts to that xs minimizes 

)()( 21 xx wgg + . 

2) If x′ satisfies b), )()( 11 xx ′= gg  and )()(
22
xx ′> wgwg  for w . Then 

)()()()( 2121 xxxx ′+′>+ wggwgg  and this contradicts to that xs minimizes 

)()( 21 xx wgg + . 

3) If x′  satisfies c), )()( 11 xx ′> gg  and )()(
22
xx ′= wgwg  for w . This is a contradiction. 

Hence, Theorem holds.                                                                        □ 
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